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Polarization parameters of light scattered from biological tissue contain rich morphological and
functional information of potential biomedical importance. Despite the wealth of interesting pa-
rameters that can be probed with polarized light, in optically thick turbid media such as tissues,
numerous complexities due to multiple scattering and simultaneous occurrence of many polariza-
tion effects present formidable challenges, both in terms of accurate measurement and in terms
of extraction/unique interpretation of the polarization parameters. In this chapter, we describe
the application of an expanded Mueller matrix decomposition method to tackle these complexi-
ties. The ability of this approach to delineate individual intrinsic polarimetry characteristics in
tissue-like turbid media (exhibiting multiple scattering, and linear and circular birefringence) was
validated theoretically with a polarized-light propagation model and experimentally with a polariza-
tion-modulation/synchronous detection technique. The details of the experimental turbid polarime-
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try system, forward Monte Carlo modeling, inverse polar decomposition analysis, and the results of
the validations studies are presented in this chapter. Initial applications of this promising approach
in two scenarios of significant clinical interest, that for monitoring regenerative treatments of the
heart and for noninvasive glucose measurements, as well as initial in vivo demonstration, are dis-
cussed.

Key words: polarization, multiple scattering, turbid polarimetry, light transport, Monte Carlo sim-
ulations, Stokes vector, Mueller matrix, polar decomposition, biological and medical applications

9.1 Introduction

Polarimetry has played important roles in our understanding of the nature of electromagnetic
waves, elucidating the three-dimensional characteristics of chemical bonds, uncovering the asym-
metric (chiral) nature of many biological molecules, quantifying protein properties in solutions,
supplying a variety of nondestructive evaluation methods, and contributing to remote sensing in
meteorology and astronomy [1–3]. The use of polarimetric approaches has also received consider-
able recent attention in biophotonics [4–6]. This is because polarization parameters of light scattered
from biological tissue contain rich morphological and functional information of potential biomed-
ical importance. For example, the anisotropic organized nature of many tissues stemming from
their fibrous structure leads to linear birefringence (or linear retardance), manifest as anisotropic
refractive indices parallel and perpendicular to the fibers. Muscle fibers and extracellular matrix
proteins (such as collagen and elastin) possess this fibrous structure and accordingly exhibit linear
birefringence. Changes in this anisotropy resulting from disease progression or treatment response
alter the optical birefringence properties, making this a potentially sensitive probe of tissue status
[7,8]. Glucose, another important tissue constituent, exhibits circular birefringence due to its asym-
metric chiral structure. Its presence in tissue leads to rotation of the plane of linearly polarized
light about the axis of propagation (known as optical rotation or optical activity). Measurements of
optical rotation may offer an attractive approach for noninvasive monitoring of tissue glucose levels
[9–14].

Despite the wealth of interesting properties that can be probed with polarized light, in opti-
cally thick turbid media such as tissues, numerous complexities due to multiple scattering present
formidable challenges. Multiple scattering causes extensive depolarization that confounds the es-
tablished techniques. Further, even if some residual polarization signal can be measured, multiple
scattering also alters the polarization state, for example by scattering-induced diattenuation and by
scattering-induced changes in the orientation of the linear polarization vector that appears as op-
tical rotation [10,14]. Quantitative polarimetry in tissue is further compromised by simultaneous
occurrences of many polarization effects.

The Mueller matrix represents the transfer function of an optical system in its interactions with
polarized light, the elements reflecting various sample properties of potential interest [15, 16]. How-
ever, in complex turbid media such as tissues, many optical polarization effects occur simultane-
ously (the most common biopolarimetry events are depolarization, linear birefringence, and optical
activity), and contribute in a complex interrelated way to the Mueller matrix elements. Hence, these
represent several “lumped” effects, masking potentially interesting ones and hindering unique data
interpretation. The challenges are thus to minimize or compensate for multiple scattering, and to
decouple the individual contributions of simultaneously occurring polarization effects. Each of the
individual processes, if separately extracted from the “lumped” system Mueller matrix, can poten-
tially be used as a useful biological metric.
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We have recently developed and validated an expanded Mueller matrix decomposition approach
for extraction, quantification and unique interpretation of individual intrinsic polarimetry character-
istics in complex tissue-like turbid media [17,18]. The ability of this approach to delineate individual
intrinsic polarimetry characteristics was validated theoretically with a polarized-light propagation
model, and experimentally with a polarization-modulation/synchronous detection technique. In this
chapter, we summarize this (and related) research on turbid polarimetry, and discuss initial biomed-
ical applications of this promising approach.

This chapter is organized as follows. In section 9.2, we describe the basics of Mueller matrix
algebra and also define the constituent polarization parameters. The mathematical methodology
of polar decomposition for extraction of the individual intrinsic polarimetry characteristics from
“lumped” Mueller matrix is outlined in section 9.3. Section 9.4 describes the high-sensitivity po-
larization modulation / synchronous detection experimental system capable of measuring complete
Mueller matrix elements from strongly depolarizing scattering media such as tissues. This is fol-
lowed by the description of the corresponding theoretical model in section 9.5, based on the forward
Monte Carlo (MC) modeling, with the flexibility to incorporate all the simultaneous optical (scat-
tering and polarization) effects. Section 9.6 reviews the experimental and theoretical validation
results of the polar decomposition approach to delineate individual intrinsic polarimetry character-
istics in complex tissue-like turbid media. In section 9.7, we present selected trends of the depen-
dence of decomposition-derived polarization parameters on multiple scattering, propagation path,
and detection geometry. In section 9.8, we discuss the initial applications of the Mueller matrix
decomposition approach in two scenarios of significant clinical interest, for noninvasive glucose
measurements and for monitoring of regenerative treatments of the heart. The proof-of-principle
demonstration of in vivo use of this method for polarization-based characterization of tissue is also
presented in this section. The chapter concludes with a discussion of the prospective biomedical
utility of this promising approach.

9.2 Mueller Matrix Preliminaries and the Basic Polarization Parameters

The state of polarization of a beam of light can be represented by four measurable quantities
(known as Stokes parameters) that, when grouped in a 4× 1 vector, are known as the Stokes vec-
tor [15], introduced by G. G. Stokes in 1852. The four Stokes parameters are defined relative to
the following six intensity measurements (I) performed with ideal polarizers: IH , horizontal linear
polarizer (0◦); IV , vertical linear polarizer (90◦); IP, 45◦ linear polarizer; IM , 135◦ (−45◦) linear
polarizer; IR, right circular polarizer, and IL, left circular polarizer. The Stokes vector (S) is defined
as

S =

⎡
⎢⎢⎣

I
Q
U
V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

IH + IV
IH − IV
IP− IM
IR− IL

⎤
⎥⎥⎦ (9.1)

where I,Q,U , and V are Stokes vector elements. I is the total detected light intensity that cor-
responds to addition of any two orthogonal component intensities, while Q is the portion of the
intensity that corresponds to the difference between horizontal and vertical polarization states, U is
the portion of the intensity that corresponds to the difference between intensities of linear +45◦ and
−45◦ polarization states, and V is portion of the intensity that corresponds to the difference between
intensities of right circular and left circular polarization states. For a completely polarized beam of
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light, the Stokes parameters are not all independent [15]

I =
√

Q2 +U2 +V 2. (9.2)

From Stokes vector elements, the following polarization parameters of partially polarized light
can be determined [15]:
degree of polarization

DOP =
√

Q2 +U2 +V 2/I, (9.3)

degree of linear polarization

DOLP =

√
Q2 +U2

I
, (9.4)

and degree of circular polarization

DOCP =
V
I
. (9.5)

While the Stokes vector represents the polarization properties of the light, the Mueller matrix (M)
contains complete information about all the polarization properties of the medium. The Mueller
matrix M (a 4 × 4 matrix) is a mathematical description of how an optical sample interacts or
transforms the polarization state of an incident light beam. In essence, the Muller matrix can be
thought of as the “optical fingerprint” or transfer function of a sample. Mathematically, this matrix
operates directly on an input or incident Stokes vector, resulting in an output Stokes vector that
describes the polarization state of the light leaving the sample. This is described mathematically by
the following equation:

So = M ·Si. (9.6)

⎡
⎢⎢⎣

Io

Qo

Uo

Vo

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ii

Qi

Ui

Vi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m11Ii +m12Qi +m13Ui +m14Vi

m21Ii +m22Qi +m23Ui +m24V
m31Ii +m32Qi +m33Ui +m34V
m41Ii +m42Qi +m43Ui +m44V

⎤
⎥⎥⎦ , (9.7)

where So and Si are the output and input Stokes vectors, respectively.
The different polarization properties of a medium are coded in the various elements of the Mueller

matrix M. The three basic polarization properties are diattenuation (differential attenuation of or-
thogonal polarization), retardance (de-phasing of orthogonal polarization) and depolarization; the
functional forms of the corresponding matrices are well known [15].

Diattenuation
Diattenuation (d) by an optical element corresponds to differential attenuation of orthogonal

polarizations for both linear and circular polarization states. Accordingly, linear diattenuation is
defined as differential attenuation of two orthogonal linear polarization states and circular diatten-
uation is defined as differential attenuation of right circular polarized light (RCP) and left circular
polarized light (LCP). Mathematically, the Mueller matrix for an ideal diattenuator can be defined
using two intensity measurements, q and r,for the two incident orthogonal polarization states (either
linear or circular). Using this convention, the general Mueller matrix for a linear diattenuator is
defined as

⎛
⎜⎜⎜⎜⎝

q+ r (q− r)cos2θ (q− r)sin2θ 0

(q− r)cos2θ (q+ r)cos2 2θ +2
√

(qr)sin2 2θ
(

q+ r−2
√

(qr)
)

sin2θ cos2θ 0

(q− r)sin2θ
(

q+ r−2
√

(qr)
)

sin2θ cos2θ (q+ r)cos2 2θ +2
√

(qr)sin2 2θ 0

0 0 0 2
√

(qr)

⎞
⎟⎟⎟⎟⎠

. (9.8)
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where θ is the angle between the diattenuation axis of the sample and the horizontal (laboratory)
frame. Briefly, the sample’s diattenuation axis is the direction of minimum attenuation (an analo-
gous definition exits for sample’s birefringence axis, as detailed further in the next section). Simi-
larly for circular diattenuation, the general form of Mueller matrix is

⎛
⎜⎜⎝

q+ r 0 0 q− r
0 2

√
(qr) 0 0

0 0 2
√

(qr) 0
q− r 0 0 q+ r

⎞
⎟⎟⎠ . (9.9)

Ideal polarizers that transform incident unpolarized light to completely polarized light are exam-
ples of diattenuators (with magnitude of diattenuation d = 1.0 for ideal polarizer; d is a dimension-
less quantity, ranging from 0 to 1.0). Note that this is analogous to dichroism, which is defined as
the differential absorption of two orthogonal linear polarization states (linear dichroism) or of CP
states (circular dichroism). The term “diattenuation” is more general in that it is defined in terms
of differential attenuation (either by absorption or scattering). Many biological molecules (such as
amino acids, proteins, nucleic acids) exhibit dichroism or diattenuation effects.

Retardance
Retardance is the de-phasing of the two orthogonal polarization states. Linear retardance (δ )

arises due to difference in phase between orthogonal linear polarization states (between vertical
and horizontal or between 45◦ and −45◦). Circular retardance or optical rotation (ψ) arises due to
difference in phase between RCP and LCP.

The general form of a Mueller matrix of a linear retarder with retardance δ and orientation angle
of retarder axis θ is [15]

⎛
⎜⎜⎝

1 0 0 0
0 cos2 2θ + sin2 2θ cosδ sin2θ cos2θ(1− cosδ ) −sin2θ sinδ
0 sin2θ cos2θ(1− cosδ ) sin2 2θ + cos2 2θ cosδ cos2θ sinδ
0 sin2θ sinδ −cos2θ sinδ cosδ

⎞
⎟⎟⎠ . (9.10)

where θ is the angle between the retardation axis of the sample and the horizontal (laboratory)
frame. Similarly, the Mueller matrix for a circular retarder with retardance ψ is

⎛
⎜⎜⎝

1 0 0 0
0 cos2ψ −sin2ψ 0
0 sin2ψ cos2ψ 0
0 0 0 1

⎞
⎟⎟⎠ . (9.11)

Linear retardance has its origin in anisotropy in refractive indices, which leads to phase retar-
dation between two orthogonal linear polarization states. In tissue, muscle fibers and extracellular
matrix proteins (such as collagen and elastin) possess such anisotropy and thus exhibit linear bire-
fringence. Circular retardance or optical rotation arises due to asymmetric chiral structures. In
tissue, glucose and other constituents such as proteins and lipids possess such chiral structure and
accordingly exhibit circular retardance. Note that while diattenuation is associated with amplitude
difference in the two orthogonal field components (either for linearly or circularly polarized field),
retardance is associated with phase difference between orthogonal field components.

Depolarization
If an incident state is polarized and the exiting state has a degree of polarization less than one,

then the sample exhibits depolarization. Depolarization is intrinsically associated with scattering,
resulting in losses of directionality, phase, and coherence of the incident polarized beam. In a turbid
medium like biological tissue, multiple scattering is the major source of depolarization. The general
form of the depolarization Mueller matrix is
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MΔ =

⎛
⎜⎜⎝

1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

⎞
⎟⎟⎠ , |a| , |b| , |c| ≤ 1. (9.12)

Here 1−|a| and 1−|b| are depolarization factors for linear polarization, and 1−|c| is the depolar-
ization factor for circular polarization. Note that this definition of depolarization factor is different
from the Stokes parameter-based definition of degrees of polarization [Eqs. (9.3)–(9.5)]. The latter
represents the value of degree of polarization of the emerging beam, and result from several lumped
polarization interactions. In contrast, the depolarization factors of Eq. (9.12) represent the pure
depolarizing transfer function of the medium.

The operational definition of the Mueller matrices of the polarization properties, described above,
enables one to correctly forward model these individual effects of any medium. However, the prob-
lem arises when all these polarization effects are exhibited simultaneously in a medium [as is the
case for biological tissue that often exhibit depolarization, linear birefringence, optical activity, and
diattenuation (the magnitude of diattenuation in tissue is, however, much lower compared to the
other effects)]. Simultaneous occurrence of many polarization effects contributes in a complex in-
terrelated way to the resulting Mueller matrix elements. Hence, these represent several “lumped”
effects, hindering their extraction / unique interpretation and necessitating additional analysis to
decouple the individual sample characteristics. In the following section, we describe a matrix de-
composition method to tackle this problem.

9.3 Polar Decomposition of Mueller Matrices for Extraction of the Individ-
ual Intrinsic Polarization Parameters

Having described the common polarimetry characteristics of individual elements and their corre-
sponding Mueller matrices for forward modeling, we now turn to the complicated inverse problem
of separating out the constituent contributions from simultaneous polarization effects.

That is, given a particular Mueller matrix obtained from an unknown complex system, can it
be analyzed to extract constituent polarization contributions? Here, we shall discuss an extended
Mueller matrix decomposition methodology that enables the extraction of the individual intrinsic
polarimetry characteristics from the “lumped” system Mueller matrix [17–19]. In addition to the
inverse Mueller matrix decomposition method, we have also developed a polarization sensitive for-
ward Monte Carlo (MC) model capable of simulating all the simultaneous optical (scattering and
polarization) effects [20]. This is further supplemented by a high-sensitivity polarization modula-
tion/synchronous detection experimental system capable of measuring the complete Mueller matrix
from tissues and tissue-like turbid media [10]. These three methodologies form our comprehensive
turbid polarimetry platform. A schematic of this turbid polarimetry platform is shown in Figure
9.1. The (i) experimental polarimetry system and (ii) polarization-sensitive Monte Carlo model are
discussed subsequently in Sections 9.4 and 9.5 respectively.

For now, we turn our attention to the inverse Mueller matrix decomposition method [part (iii) of
Figure 9.1]. The method consists of decomposing a given Mueller matrix M into the product of
three “basis” matrices [19]

M = M ΔM RMD, (9.13)

representing a depolarizer matrix MΔ to account for the depolarizing effects of the medium, a re-
tarder matrix MR to describe the effects of linear birefringence and optical activity, and a diattenua-
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FIGURE 9.1: Schematic of the turbid polarimetry platform: (i) experimental system based on po-
larization modulation and phase-sensitive synchronous detection, (ii) polarization-sensitive Monte
Carlo simulations for forward modeling of simultaneous polarization effects in the presence of tur-
bidity, and (iii) the polar decomposition of the Mueller matrix to inverse calculate the constituent
polarization contributions in complex turbid media. In the experimental system (i): C, mechanical
chopper; P1, P2, polarizers; WP1, WP2, removable quarter wave plates; A, aperture; L1, L2 lenses;
PEM, photoelastic modulator; D, photodetector; fc, fp modulation frequencies of mechanical chop-
per and PEM, respectively. The detection optics can be rotated by an angle γ around the sample.

tor matrix MD to include the effects of linear and circular diattenuation. The validity of this decom-
position procedure was first demonstrated in optically clear media by Lu and Chipman [19]. Here,
we extend their analysis to encompass complex tissue-like turbid media. Once calculated, these
constituent matrices can further be analyzed to derive quantitative individual polarization medium
properties, as summarized below [17, 19, 21]. The diattenuation matrix MD is defined as

MD =
[

1 d̄ T

d̄ mD

]
, (9.14)
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where mD is a 3×3 submatrix, the standard form of which is

mD =
√

(1−d2)I +(1−
√

(1−d2)) d̂ d̂T , (9.15)

where I is the 3×3 identity matrix, �d is diattenuation vector and d̂ is its unit vector, defined as

�d =
1

M(1,1)
[M(1,2)M(1,3)M(1,4)]T and d̂ =

�d

|�d | . (9.16)

The magnitude of diattenuation |�d | can be determined as

d =
1

M(1,1)

√
M(1,2)2 +M(1,3)2 +M(1,4)2. (9.17)

Here M(i, j) are elements of the original sample Mueller matrix M. The coefficients M(1,2) and
M(1,3) represent linear diattenuation for horizontal (vertical) and +45◦(−45◦) linear polarization
respectively and the coefficient M(1,4) represents circular diattenuation; this can be seen from the
original definition of the Stokes/Mueller formalism [Eq. (9.7)].

Having dealt with diattenuation, the product of the retardance and the depolarizing matrices fol-
lows from Eq. (9.13) as

MΔM R = M′ = M M−1
D . (9.18)

The matrices MΔ, M R and M′ have the following form

MΔ =
[

1 �0T

PΔ mΔ

]
; M R =

[
1 �0T

�0 mR

]
; and M′ =

[
1 �0T

PΔ m′

]
(9.19)

Here PΔ = (�P−m�d)/(1− d2), the Polarizance vector �P = M(1,1)−1[M(2,1)M(3,1)M(4,1)]T

[mΔ and mR are 3×3 submatrices of MΔ and MR]. Similarly, m′ is a 3×3 submatrix of M′ and can
be written as

m′ = mΔmR. (9.20)

The submatrix mΔ can be computed by solving the eigenvalue problem for the matrix m′ m′ T [19].
This can then be used to construct the depolarization matrix MΔ. From the elements of MΔ, net
depolarization coefficient Δ can be calculated as

Δ =
1
3
|Tr(MΔ)−1|. (9.21)

Finally, the expression for the retardance submatrix can be obtained from Eq. (9.20) as

mR = m−1
Δ m′. (9.22)

From Eq. (9.19) and (9.22), the total retardance MR matrix can be computed.
The value for total retardance (R is a parameter that represents the combined effect of linear and

circular birefringence) can be determined from the decomposed retardance matrix MR using the
relationship

R = cos−1
{

Tr(MR)
2

−1

}
. (9.23)

MR can be further expressed as a combination of a matrix for a linear retarder (having a magnitude
of linear retardance δ , its retardance axis at angle θ with respect to the horizontal) and a circular
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retarder (optical rotation with magnitude of ψ). Using the standard forms of the linear retardance
and optical rotation matrices [Eq. (9.10) and (9.11)], the relationship between total retardance (R),
optical rotation (ψ ) and linear retardance (δ ) can be worked out as [19]

R = cos−1 {
2cos2(ψ)cos2(δ/2)−1

}
. (9.24)

The values for optical rotation (ψ) and linear retardance (δ ) can be determined from the elements
of the matrix MR as [17, 21]

δ = cos−1
(√

(MR (2,2)+MR (3,3))2 +(MR (3,2)−MR (2,3))2 −1

)
(9.25)

and

ψ = tan−1
(

MR (3,2)−MR (2,3)
MR (2,2)+MR (3,3)

)
. (9.26)

An interesting problem is that the multiplication order in Eq. (9.13) is ambiguous (due to the
noncommuting nature of matrix multiplication, MAMB �= MBMA), so that six different decomposi-
tions (order of multiplication) are possible. It has been shown that the six different decompositions
can be grouped in two families, depending upon the location of the depolarizer and the diattenua-
tor matrices [19, 22, 23]. The three decompositions with the depolarizer set after the diattenuator
form the first family (of which Eq. (9.13) is a particular sequence). On the other hand, the three
decompositions with the depolarizer set before the diattenuator constitute the other family.

M = M ΔM RM D M = M D M RM Δ
(MΔD family) M = M ΔM D M R (MDΔ family) M = M RM D M Δ

M = M RM ΔM D M = M D M ΔM R

. (9.27)

It has been shown that among the six decompositions, product in Eq. (9.13) or its reverse order
(M = MD MR MΔ) always produce a physically realizable Mueller matrix [23]. The other possible
decompositions can be obtained using similarity transformations, for each of the two individual
families. It is thus favorable to use these two orders of decomposition when nothing is known a
priori about an experimental Mueller matrix.

To summarize, we have presented a mathematical methodology of matrix decomposition to sepa-
rate out the individual intrinsic polarimetry characteristics from “lumped” Mueller matrix obtained
from an unknown complex system. Its validation and initial biological applications are described
later. In the following section, we describe a high-sensitivity polarization modulation/synchronous
detection experimental system for the measurement of Mueller matrix in tissue-like turbid media.

9.4 Sensitive Experimental System for Mueller Matrix Measurements in
Turbid Media

In order to measure polarization signals in strongly depolarizing scattering media such as bio-
logical tissues, a highly sensitive polarimetry system is required. Multiple scattering leads to de-
polarization of light, creating a large depolarized source of noise that hinders the detection of the
small residual polarization-retaining signal. One possible method to detect these small polarization
signals is the use of polarization modulation with synchronous lock-in-amplifier detection. Many
types of detection schemes have been proposed with this approach [10, 11, 13]. Some of these
perform polarization modulation on the light that is incident on the sample; others modulate the
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sample-emerging light, by placing the polarization modulator between the sample and the detector.
The resultant signal can be analyzed to yield sample-specific polarization properties that can then
be linked to the quantities of interest. We describe here a specific experimental embodiment of the
polarization modulation/synchronous detection approach. This arrangement carries the advantage
of being assumption-independent, in that no functional form of the sample polarization effects is
assumed [10]. This is important for polarimetric characterization of complex media such as tissues,
since there are typically several polarization-altering effects occurring simultaneously. In such sit-
uations, it is preferable to have an approach that does not require assumptions on how tissue alters
polarized light, but rather determines it directly.

A schematic of the experimental turbid polarimetry system was shown in Figure 9.1 [part (i)]
[10]. Unpolarized light at 632.8 nm from a He-Ne laser is used to seed the system. The light first
passes through a mechanical chopper operating at a frequency fc ∼ 500 Hz; this is used in con-
junction with lock-in amplifier detection to accurately establish the overall signal intensity levels.
Recording of the full (4×4) Mueller matrix requires generation of the four input polarization states,
0◦ (Stokes vector [1 1 0 0]T ), 45◦ (Stokes vector [1 0 1 0]T ), and 90◦ (Stokes vector [1 − 1 0 0]T )
linear polarizations, as well as circular polarization (Stokes vector [1 0 0 1]T ), which is enabled
by the input optics (a linear polarizer P1 with/without the quarter wave plate WP1). The sample-
scattered light is detected at a chosen angle (γ) as the detection optics can be rotated around the
sample. The detection optics begin with a removable quarter wave plate (WP2) with its fast axis
oriented at −45◦, when in place allowing for the measurement of Stokes parameters Q and U (linear
polarization descriptors), and when removed allowing for the measurement of Stokes parameter V
(circular polarization descriptor). The light then passes through a photoelastic modulator (PEM),
which is a linearly birefringent resonant device operating at fp = 50 kHz. The fast axis of the PEM
is at 0◦ and its retardation is modulated according to the sinusoidal function δ PEM(t) = δ osinωt,
where ω p = 2π fp and δ o is the user-specified amplitude of maximum retardation of PEM. The light
finally passes through a linear analyzer orientated at 45◦, converting the PEM-imparted polarization
modulation to an intensity modulation suitable for photodetection. The resulting modulated inten-
sity is collected using a pair of lenses (detection area of 1 mm2 and acceptance angle ∼ 18◦) and is
relayed to an avalanche photodiode detector. The detected signal is sent to a lock-in amplifier, with
its reference input toggling between the frequencies of the chopper (500 Hz) and the PEM controller
(50 kHz and harmonics) for synchronous detection of their respective signals.

For a given polarization state of the incident light, the Stokes vector of light after the analyzing
block [I f Q fUfVf ]T , can be related to that of the sample-emerging beam [IQUV]T as (with detection
quarter wave-plate in place) [10]

P2 PEM WP2

⎛
⎜⎜⎝

I f

Q f

Uf

Vf

⎞
⎟⎟⎠ =

1
2

⎛
⎜⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cosδ sinδ
0 0 −sinδ cosδ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ , (9.28)

and when the detection quarter wave-plate is removed as

P2 PEM
⎛
⎜⎜⎝

I f r

Q f r

Uf r

Vf r

⎞
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1
2

⎛
⎜⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cosδ sinδ
0 0 −sinδ cosδ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ . (9.29)

The detected time-dependent intensities are thus
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I f (t) =
I
2

[1−qsinδ +ucosδ ] , (9.30)

and

I f r (t) =
I
2

[1− vsinδ +ucosδ ] , (9.31)

Here q = Q/I, u = U/I, and v = V/I, and δ is the time-dependent PEM retardation, δ = δ0 sinωt.
The time-varying circular function in the argument of another circular function of Eq. (9.30) and
(9.31) can be expanded in Fourier series of Bessel functions, to yield signals at different harmonics
of the fundamental modulation frequency. It can be advantageous in terms of SNR to choose the
peak retardance of the PEM such that the zeroth order-Bessel function J0 is zero [10]; with δ o =
2.405 radians (resulting in J0(δ o) = 0), Fourier-Bessel expansion of Eq. (9.30) and (9.31) gives

I f (t) =
1
2

[1−2J1(δ0)qsinωt +2J2(δ0)ucos2ωt + . . . ] , (9.32)

and

I f r(t) =
1
2

[1−2J1(δ0)vsinωt +2J2(δ0)ucos2ω + . . . ] . (9.33)

The normalized Stokes parameters of the sample-scattered light (q,u, and v) can thus be obtained
from synchronously-detected signals at the chopper frequency V1 f c (the dc signal level), and at the
first and second harmonics of the PEM frequency V1 f p and V2 f p respectively. The experimentally
measurable waveform in terms of the detected voltage signal is,

V (t) = V1 f c +
√

2V1 f p sinωt +
√

2V2 f p cos2ωt + . . . , (9.34)

with
√

2 factor taking into account the RMS nature of lock-in detection [10]. Applying Eq. (9.34)
to the detected signal with the detection wave plate in the analyzer arm [Eq. (9.32)] gives

V1 f c =
I
2

k,
√

2V1 f = −IkJ1(δ0)q,
√

2V2 f = IkJ2(δ0)u, (9.35)

where k is an instrumental constant, same for all equations. The normalized linear polarization
Stokes parameters q and u are then obtained from,

q =
V1 f p√

2J1 (δo)V1 f c
, (9.36)

and

u =
V2 f p√

2J2 (δo)V1 f c
, (9.37)

Comparing Eqs. (9.34) and (9.33) when the detection quarter wave plate is removed yields

V1 f c =
I
2

k (9.38)

√
2V1 f = −IkJ1(δ0)v,

and the circular polarization Stokes parameter v is then obtained as,

v =
V1 f p√

2J1(δ0)V1 f c
. (9.39)
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The preceding discussion of experimental determination of Stokes vector descriptors deals with
quantifying the polarization state of the sample-scattered light; we now turn our attention explicitly
to determining the polarization properties of the sample as described by its Mueller matrix. In order
to perform measurements of the full (4×4) Mueller matrix, the input polarization is cycled between
four states (linear polarization at 0◦, 45◦, 90◦, and right circular polarization) and the output Stokes
vector for each respective input state is measured. The elements of the resulting 4 measured Stokes
vectors can be analyzed to yield the sample Mueller matrix as [17]

M(i, j) =

⎡
⎢⎢⎣

1
2 (IH + IV ) 1

2 (IH − IV ) Ip −M(1,1) IR −M(1,1)
1
2 (QH +QV ) 1

2 (QH −QV ) Qp −M(2,1) QR −M(2,1)
1
2 (UH +UV ) 1

2 (UH −UV ) Up −M(3,1) UR −M(3,1)
1
2 (VH +VV ) 1

2 (VH −VV ) Vp −M(4,1) VR −M(4,1)

⎤
⎥⎥⎦ . (9.40)

Here, the four input states are denoted with the subscripts H (0◦), P (45◦), V (90◦), and R (right
circularly polarized; left circular incidence can be used as well, resulting only in a sign change).
The indices i, j = 1,2,3,4 denote rows and columns respectively.

The described experimental approach based on polarization modulation and synchronous de-
tection is suitable for sensitive polarimetric detection in turbid media. This experimental system
has been used to carry out several fundamental studies on turbid medium polarimetry and for
polarization-based characterization of biological tissues. Some of these studies are described in
Section 9.6, and 9.8 of this chapter. For now, we turn to the equally challenging problems of ac-
curately forward modeling the polarization signals in turbid media (part (ii) of Figure 9.1, Section
9.5).

9.5 Forward Modeling of Simultaneous Occurrence of Several Polarization
Effects in Turbid Media Using the Monte Carlo Approach

To aid in the investigation of polarized light propagation in turbid media such as biological tis-
sue, accurate modeling is enormously useful for gaining physical insight, designing and optimizing
experiments, and analyzing measured data. The Maxwell’s equations-based electromagnetic the-
oretical approach is the most rigorous and best-suited method for polarimetric analysis; however,
solving Maxwell’s equations for polarized light propagation in multiple scattering media is imprac-
tical. Alternatively, light propagation through scattering media can in principle be modeled through
transport theory; however, transport theory and its simplified variant, the diffusion approximation,
are both intensity-based techniques, and hence typically neglect polarization [24]. A more general
and robust approach is the Monte Carlo technique [24]. In this statistical approach to radiative trans-
fer, the multiple scattering trajectories of individual photons are determined using a random number
generator to predict the probability of each scattering event. The superposition of many photon
paths approaches the actual photon distribution in time and space. This approach has the advantage
of being applicable to arbitrary geometries and arbitrary optical properties. The first Monte Carlo
models were also developed for intensity calculations only and neglected polarization information
[25]. More recently, a number of implementations have incorporated polarization into their Monte
Carlo models [26]. Currently, the Monte Carlo technique is the most general approach to simulate
polarized light propagation in scattering media, although long computation times are often required
to generate statistically meaningful results.

A flowchart for polarization-sensitive Monte Carlo model is shown in Figure 9.2. In this model-
ing, it is assumed that scattering events occur independently and exhibit no coherence effects. The
position, propagation direction, and polarization of each photon are initialized and modified as the
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FIGURE 9.2: Flowchart for polarization-sensitive Monte Carlo model. The polarization effects
are applied using medium Mueller matrices. The Mueller matrix for scattering is calculated using
Mie theory and that for other simultaneously occurring effects (birefringence and optical activity)
are calculated using N-matrix approach (see text).

photon propagates through the scattering medium. The photon’s polarization, with respect to a set
of arbitrary orthonormal axes defining its reference frame, is represented as a Stokes vector S and
polarization effects are applied using medium Mueller matrices M [11, 27]. The photon propa-
gates in the sample between scattering events a distance l sampled from the probability distribution
exp(−μt l). Here, the extinction coefficient μt is the sum of the absorption μa and scattering μs

coefficients and l is the distance traveled by the photon between scattering events. When the photon
encounters a scattering event, a scattering plane and angle are statistically sampled based on the
polarization state of the photon and the Mueller matrix of the scatterer.

The photon’s reference frame is first expressed in the scattering plane and then transformed to
the laboratory (experimentally observable) frame through multiplication by a Mueller matrix cal-
culated through Mie scattering theory [28]. Upon encountering an interface (either an internal one,
representing tissue domains of different optical properties, or an external one, representing exter-
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nal tissue boundary), the probability of either reflection or transmission is calculated using Fresnel
coefficients. As no coherence effects are considered, the final Stokes vector for light exiting the
sample in a particular direction is computed as the sum of all the appropriate directional photon
subpopulations. Various quantities of interest such as detected intensities, polarization properties
(Stokes vectors, Mueller matrices), average pathlengths, and so forth, can be quantified once a suffi-
cient number of photon (packets) have been followed and tracked to generate statistically acceptable
results (typically 107–109 photons).

However, most current Monte Carlo models of polarized light propagation do not fully simulate
all of the polarization effects of tissue. This is primarily due to the inherent difficulty in formulating
simultaneous polarization effects, especially in the presence of multiple scattering. As discussed
previously, multiplication of the Mueller matrices for individual polarization effects is not com-
mutative, thus, different orders in which these effects are applied will have different effects on the
polarization. Ordered multiplication of these matrices does not make physical sense, as in biolog-
ical tissue these effects (such as optical activity due to chiral molecules and linear birefringence
due to anisotropic tissue structures) are exhibited simultaneously, and not one after the other as se-
quential multiplication implies. Fortunately, a method exists to simulate simultaneous polarization
effect in clear media through the so-called N-matrix formalism, which combines the effects into a
single matrix describing them simultaneously [29]. The N-matrix formalism was thus employed in
the polarization-sensitive Monte Carlo simulation code in tissue-like media to model simultaneous
polarization effects between scattering events in the presence of multiple scattering.

The N-matrix approach was first developed by Jones [29], and a more thorough derivation is
provided in Kliger et al. [3]. Briefly, in this approach the sample matrix is represented as an
exponential function of a sum of matrices, where each matrix in the sum corresponds to a single
optical polarization effect. The issue of ordering of noncommutative multiplying matrices disap-
pears as matrix addition is always commutative, and applies to differential matrices representing the
optical property over an infinitely small optical pathlength. These differential matrices, known as
N-matrices, correspond to each optical property exhibited by the sample and are summed to express
combined effect. The formalism is expressed in terms of 2× 2 Jones matrices applicable to clear
nondepolarizing media, rather than the more commonly used 4× 4 Mueller matrices. However, a
Jones matrix can be converted to a Mueller matrix provided there are no depolarization effects [15].
This is indeed applicable to our Monte Carlo model, as depolarization is caused by the multiple
scattering events, and no depolarization effects occur between the scattering events. Once con-
verted to the Mueller matrix formalism, this modified N-matrix approach was then applied to the
photons as they propagate between scattering events in the MC simulation. This approach enabled
the combination of any number of simultaneously occurring polarizing effects [in our case, circular
birefringence (optical activity) and linear birefringence were incorporated, since these are the most
prominent tissue polarimetry effects] [20].

In the simulations, circular and linear birefringence were modeled through the optical activity
χ in degrees per centimeter, and through the anisotropy in refractive indices (Δn), respectively.
Here, Δn = (ne − no) is the difference in the refractive index along the extraordinary axis (ne)
and the ordinary axis (no). For simplicity, it was assumed that the medium is uni-axial and that
the direction of the extraordinary axis and the value for Δn is constant throughout the scattering
medium. In each simulation, ne and no were taken as input parameters and a specific direction
of the extraordinary axis was chosen. As each photon propagates between scattering events, the
difference in refractive indices seen by the photon depends on the propagation direction with respect
to the extraordinary axis. The effect was modeled using standard formulae describing the angular
variation of the refractive index in a uni-axial medium [20].

The ability of the extended polarization-sensitive Monte Carlo model to simulate simultaneous
polarization effects in the presence of multiple scattering was experimentally validated in solid poly-
acrylamide phantoms exhibiting simultaneous linear birefringence, optical activity, and depolariza-
tion [20]. These were developed using polyacrylamide as a base medium, with sucrose-induced
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optical activity, polystyrene microspheres-induced scattering (mean diameter D = 1.40μm, refrac-
tive index ns = 1.59), and mechanical stretching to cause linear birefringence (or linear retardance).
To apply controllable strain to produce linear birefringence, one end of the polyacrylamide phan-
toms (dimension of 1×1×4 cm) was clamped to a mount and the other end to a linear translational
stage. The phantoms were stretched along the vertical direction (the long axis of the sample) to in-
troduce varying linear birefringence with its axis along the direction of strain. Measurements of the
Stokes parameters (normalized Stokes parameters q = Q/I, u =U/I, v =V/I) of scattered light (in
different geometries) from the phantoms were made using the PEM-based polarimeter (described
in the previous section), and compared to the results of Monte Carlo simulations run with similar
parameters. Measurements were made from phantoms exhibiting turbidity and birefringence (no
added sucrose, i.e, no optical activity), as well as for phantoms exhibiting turbidity, birefringence,
and optical activity [20]. In both cases, the Monte Carlo-simulated Stokes parameters were in ex-
cellent agreement with the controlled experimental results (for details the reader is referred to Ref.
18). These results provided strong evidence for the validity of the Monte Carlo model. The model
can therefore accurately simulate complex tissue polarimetry effects, including simultaneous optical
activity and birefringence in the presence of scattering. This, in combination with the experimental
turbid polarimetry system (and phantoms), was therefore used to test the efficacy of the Mueller ma-
trix decomposition approach to delineate individual intrinsic polarimetry characteristics in complex
tissue-like turbid media. Some of these studies are now described.

9.6 Validation of the Mueller Matrix Decomposition Method in Complex
Tissue-Like Turbid Media

Previously employed for examination of nonscattering media, the extended Mueller matrix de-
composition methodology (described in Section 9.3) has seen only initial use in turbid media, and
as such requires validation. The validity of the matrix decomposition approach summarized in
Eqs. (9.13)–(9.27) in complex turbid media was therefore tested with both experimental (Section
9.4) and MC-simulated (Section 9.5) Mueller matrices, whose constituent properties are known and
user-controlled a priori [17,18].

In the experimental studies, the PEM-based polarimeter (Figure 9.1) was used to record Mueller
matrices in the forward detection geometry (sample thickness = 1 cm, detection area of 1 mm2,
and an acceptance angle ∼ 18◦ around γ = 0◦ direction were used) from a solid polyacrylamide
phantom (discussed in the previous section) that mimics the complexity of biological tissues, in that
it exhibits simultaneous linear birefringence, optical activity, and depolarization [10, 17, 20].

Figure 9.3 and Table 9.1 show the experimental Mueller matrix and the corresponding decom-
posed depolarization (MΔ), retardance (MR), and diattenuation (MD) matrices from a birefringent
(extension = 4 mm), chiral (magnitude of optical activity was χ = 1.96degree cm−1, correspond-
ing to 1 M concentration of sucrose), turbid phantom (scattering coefficient of μs = 30 cm−1 and
anisotropy parameter g = 0.95). The complicated nature of the resultant Mueller matrix M, with
essentially all 16 nonzero matrix elements, underscores the problem at hand – how does one ex-
tract useful sample metrics from this wealth of intertwined information? In contrast, the three basis
matrices derived from the decomposition process exhibit simpler structures with many zero off-
diagonal elements, and are directly amenable for further quantification. Equations (9.17), (9.21),
(9.25), and (9.26) were applied to the decomposed basis matrices to retrieve the individual polariza-
tion parameters (d, Δ, δ , and ψ). The determined values for these are also listed in Table 9.1.

The comparison of the derived and the input control values for the polarization parameters reveals
several interesting trends. The expected value for diattenuation d is zero, whereas the decomposition
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TABLE 9.1: The values for the polarization parameters extracted
from the decomposed matrices (2nd column). The input control values
for linear retardance δ and optical rotation ψ (3rd column) were
obtained from measurement on a clear (μs = 0 cm−1) phantom having
the same extension (= 4 mm) and similar concentration of sucrose (1 M)
as that of the turbid phantom, and corrected for the increased pathlength
due to multiple scattering (determined from Monte Carlo modeling). The
expected value for the net depolarization coefficient Δ was determined
from the Monte Carlo simulation of the experiment. (Adopted from
[17]).

Parameters Estimated value
(from MΔ, MR, MD)

Expected value

d 0.03 0
δ 1.38 rad 1.34 rad
ψ 2.04◦ 2.07◦
Δ 0.21 0.19

method yields a small but nonzero value of d = 0.03. Scattering-induced diattenuation that arises
primarily from singly (or weakly) scattered photons [20] is not expected to contribute here, because
multiply scattered photons are the dominant contributors to the detected signal in the forward de-
tection geometry. Hence, the presence of small amount of dichroic absorption (at the wavelength of
excitation λ = 632.8 nm) due to anisotropic alignment of the polymer molecules in the polyacry-
lamide phantom possibly contribute to this slight nonzero value for the parameter d.

The derived decomposition value of Δ = 0.21 seems reasonable, although this is difficult to com-
pare with theory (there is no direct link between the scattering coefficient and resultant depolariza-
tion). The value shown in the theoretical comparison column of the Table was determined from the
Monte Carlo simulation of the experiment, as described in the previous section. The resultant agree-
ment in the depolarization values is excellent. It is worth noting that decomposition results for an
analogous purely depolarizing phantom (same turbidity, no birefringence nor chirality – results not

FIGURE 9.3: The experimentally recorded Mueller matrix and the decomposed matrices for a
birefringent (extension = 4 mm), chiral (concentration of sucrose = 1 M, χ = 1.96◦ / cm), turbid (μs

= 30 cm−1, g = 0.95, thickness t = 1 cm) phantom (Adopted from [17]).
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FIGURE 9.4: Linear retardance δ and optical rotation ψ estimated from the decomposition of
experimentally recorded Mueller matrices from solid chiral (χ = 1.96◦ cm−1, corresponding to
1 M concentration of sucrose) phantoms having varying degrees of strain-induced birefringence
(extension of 0–4 mm, δ = 0–1.345). Results are shown for both clear (μs = 0 cm−1) and turbid
(μs = 30 cm−1, g = 0.95) phantoms. The measurements were performed in the forward direction (γ
= 0◦) through a 1 cm × 1 cm × 4 cm phantom. The points represent decomposition-derived values
and the lines are guide for the eye for this and all subsequent figures. (Adopted from [17]).

shown) were within 5% of the above Δ values [17]. This self-consistency implied that decomposi-
tion process successfully decouples the depolarization effects due to multiple scattering from linear
retardation and optical rotation contributions, thus yielding accurate and quantifiable estimates of
the δ and ψ parameters in the presence of turbidity.

The Mueller-matrix derived value of optical rotation ψ = 2.04◦ of the turbid phantom was, how-
ever, slightly larger than the corresponding value measured from a clear phantom having the same
concentration of sucrose (ψ0 = 1.77◦). This small increase in the ψ value in the presence of tur-
bidity is likely due to an increase in optical path length engendered by multiple scattering. Indeed,
the value for ψ , calculated using the optical rotation value for the clear phantom (ψ0 = 1.77◦) and
the value for average photon path length (〈L〉= 1.17 cm, determined from Monte Carlo simulations
[20]) [ψ = ψ0 ×〈L〉 = 2.07◦] was reasonably close to the decomposition-derived value from the
experimental Mueller matrix (ψ = 2.04◦).

Although the estimated value for retardance δ of the turbid phantom is slightly larger than that
for the clear phantom (δ = 1.38 rad for the turbid phantom, as compared to 1.34 rad for the clear
phantom), the value is significantly lower than that one would expect for average photon path length
of 1.17 cm (δ = 1.34× 1.17 = 1.57 rad). This can be seen from Figure 9.4, where the estimates
for δ and ψ of the chiral (χ = 1.96◦ cm−1) phantoms having varying degree of strain induced
birefringence (extension of 0–4 mm) are displayed [17]. The increase in the value for ψ as a result
of increased average photon path length in the turbid phantom as compared to the clear phantom
is clearly seen. The gradual decrease in the value for ψ with increasing longitudinal stretching is
consistent with resulting lateral contraction of the phantom, reducing the effective path length. In
contrast to ψ , the expected increase in δ as a result of increased average photon path length in the
turbid phantom (compared to clear medium) is not that apparent.

Figure 9.5 shows the derived linear retardance δ and optical rotation ψ parameters, using Monte
Carlo-generated Mueller matrices, with chiral molecule concentration as the independent variable
[30]. Again, both the clear and turbid values compare well to the input parameter values (δ ≈ 1.4 rad
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FIGURE 9.5: δ and ψ estimated from the decomposition of Monte Carlo-generated Mueller
matrices from birefringent media (linear birefringence Δn = 1.36× 10−5, corresponding to δ =
1.345 rad [4 mm extension of 4 cm long phantom] for a path length of 1 cm, the axis of linear
birefringence was kept along the vertical direction, orientation angle θ = 90◦) having varying levels
of chirality (χ = 0,0.196,0.392,1.96 and 3.92◦ cm−1, corresponding to concentration of sucrose of
0, 0.1, 0.2, 1 and 2 M, respectively). Results are shown for both clear (μs = 0 cm−1) and turbid
(μs = 30 cm−1, g = 0.95) media. (Adopted from [30]).

and ψ ≈ 1.96◦ at 1 M sucrose), showing self-consistency in inverse decomposition analysis and
successful decoupling. Further, in agreement with the experimental results, while the value for ψ
of the turbid media is larger than that for the clear media as a result of the increase in optical path
length due to multiple scattering, a similar increase in δ value is not observed.

Note that none of these trends could be gleaned from the lumped Mueller matrix, where at best
one would have to resort to semi-empirical comparison of changes in selected matrix elements,
which contain contributions from several effects. Derivation and quantification of the absolute lin-
ear retardance δ and optical rotation ψ values is enabled exclusively by the polar decomposition
analysis. Based on these and other continuing validation studies, this approach appears valid in
complex tissue-like turbid media.

9.7 Selected Trends: Path length and Detection Geometry Effects on the
Decomposition-Derived Polarization Parameters

An interesting finding of the results presented in the previous section was that while the value
for the derived optical rotation ψ of the turbid media was consistently larger than that of the clear
media as a result of increased average photon path length, a similar increase in linear retardance
δ was not observed. Monte Carlo simulations were carried out further to understand this trend,
and to investigate the effect of multiple scattering, propagation path, and detection geometry on the
decomposition-derived δ and ψ parameters [17]. Here, we shall discuss some selected results of
those studies.

The MC results suggested that the lowering of the value of net retardance δ likely arises because
the scattered light does not travel in a straight line but rather along many possible curved zig-zag
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FIGURE 9.6: Variation of δ of transmitted light as a function of distance from ballistic beam
position at the exit face of a 1 cm thick birefringent, chiral (χ = 1.96◦ cm−1), turbid medium
(μs = 30 cm−1, g = 0.95). The results are shown for two different values of birefringence (Δn =
1.36 ×10−5 and 0.68 ×10−5). The axis of linear birefringence was kept along the vertical (Y -axis)
direction and the results are shown for transmitted light collected at different spatial positions along
the horizontal (X-axis) and vertical (Y -axis) direction. The Monte Carlo-calculated average photon
path length of light exiting the scattering medium is shown on the top axis. (Adopted from [17]).

paths, the curvature being controlled by the values for μs and g. While such paths influence ψ by
increasing its value through a relationship with the increasing photon path length, the effect of this
on the net value for δ is more complex because a component of the curved propagation paths will
be along the direction of the linear birefringence axis (along Y in Figs. 9.6, 9.7)

These results are illustrated in Figures 9.6 and 9.7. Figure 9.6 shows the variation of δ values
of transmitted light collected at the exit face of a birefringent (Δn = 1.36×10−5 and 0.68×10−5),
chiral (χ = 1.96◦ cm−1), turbid medium (μs = 30 cm−1, g = 0.95, thickness = 1 cm), as a function
of distance from the center of the transmitted ballistic beam along the horizontal (X axis, perpendic-
ular to the direction of the axis of birefringence) and vertical (Y axis, parallel to the direction of the
axis birefringence) directions. At detector positions along the X axis, δ increases with increasing
distance from the center of the ballistic beam (i.e., with increasing average photon path length).
In contrast, for detection positions along the Y axis, the value for δ shows gradual decrease with
increasing distance from the center of the ballistic beam. This is because a larger component of
the photon propagation path is along the axis of birefringence leading to a reduction in net linear
retardance δ (because propagation along the direction of the birefringence axis does not yield any
retardance [15]). Since such differences in the photon propagation path for the two different de-
tection geometries should have no influence on the value of ψ , the estimates for ψ were found to
be identical for similar detection positions either along the X- or the Y -axis at the exit face of the
medium (data not shown) [17].

Figure 9.7 demonstrates that for off-axis detection [position coordinate (3,0) or (0,3)], the Mueller
matrix-derived δ value vary considerably with a change in the orientation angle (θ) of the birefrin-
gence axis. Conversely, for detection around the position of the ballistic beam [coordinate (0, 0)],
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FIGURE 9.7: Variation of δ (estimated from the decomposition of Monte Carlo-generated
Mueller matrices) as a function of the linear birefringence axis orientation angle θ (with respect
to the horizontal) for a birefringent, chiral, turbid medium (Δn = 1.36× 10−5, χ = 1.96◦ cm−1,
μs = 30 cm−1, g = 0.95, thickness = 1 cm). Results are shown for three different detection posi-
tions at the exit face of the medium, detection around the position of the ballistic beam [position
coordinate (0,0)], detection at spatial positions 3 mm away from the ballistic beam position along
the horizontal (X) [coordinate (3,0)] and vertical (Y ) [position coordinate (0,3)] axis, respectively.
(Adopted from [17]).

δ is not influenced significantly by a change in θ . Thus, for simultaneous determination of the
intrinsic values for the parameters δ and ψ of a birefringent, chiral, turbid medium in the forward
scattering geometry, detection around the direction of propagation of the ballistic beam may be
preferable [17].

These and other experimental and MC-simulation results on phantoms having varying optical
scattering and polarization properties demonstrated that the Mueller matrix decomposition approach
can successfully delineate individual intrinsic polarimetry characteristics in complex tissue-like tur-
bid media in the forward detection geometry. Yet the backward detection geometry may be more
convenient for many practical applications (particularly for in situ measurements). However, the
scattering-induced artifacts are more coupled with the intrinsic polarization parameters in the back-
ward detection geometry, partly because of the increasing contribution of the singly or weakly
backscattered photons [10, 14, 21]. For example, backscattering induced changes in the orientation
angle of the linear polarization vector can manifest themselves as large apparent optical rotation
even in absence of chiral molecules in the medium [10, 14]. Decomposition analysis revealed that
this large scattering-induced apparent rotation is due to linear diattenuation (difference in amplitude
between the scattered light polarized parallel and perpendicular to the scattering plane) [18, 21]. In
addition to diattenuation, backscattered photons yields significant values of linear retardance (dif-
ferences in phase between the scattered light polarized parallel and perpendicular to the scattering
plane) even from isotropic (Δn = 0) scattering medium [18]. This scattering-induced linear retar-
dance interferes with the actual retardance values of a birefringent turbid medium in a complex
interrelated way, thus hindering the determination of the latter in the backward detection geometry.

Our studies have shown that the scattering-induced diattenuation and linear retardance are due
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FIGURE 9.8: (a) Diattenuation d and (b) linear retardance δ maps in the backscattering plane
(X −Y plane, Z = 0) derived using decomposition of Monte Carlo-generated Mueller matrices of a
nonbirefringent (Δn = 0), achiral (χ = 0◦ cm−1), turbid medium (μs = 60 cm−1, g = 0.935). The
nonzero values for both d and δ results primarily from the confounding effects of singly (weakly)
backscattered photons. (Adopted from [18]).

mainly to the singly (or weakly) backscattered photons, and their magnitude is large at detection
positions sufficiently close to the exact backscattering direction [18]. As one moves away from the
exact backscattering direction, these confounding effects gradually diminish. This is illustrated in
Figure 9.8, where the scattering-induced diattenuation (d) and linear retardance (δ ) maps in the
backscattering plane (X −Y plane, Z = 0) are shown from a isotropic (Δn = 0), achiral (χ = 0◦
cm−1), turbid medium (μs = 60 cm−1, g = 0.935, thickness = 1 cm). These results and further
decomposition analyses on Monte Carlo-generated Mueller matrices for turbid media having dif-
ferent scattering coefficients μs confirmed that in the backward detection geometry, the effects of
scattering-induced linear retardance and diattenuation are weak (δ ≤ 0.1 and d ≤ 0.03) for detec-
tion positions located at distances larger than a transport length away from the point of illumination
[r > ltr, ltr is the transport scattering length = 1/μs(1− g)]. Simultaneous determination of the
unique intrinsic values of all the polarization parameters from a turbid medium in the backward
detection geometry can thus be accomplished by decomposing the Mueller matrix recorded at a
distance larger than a transport length away from the point of illumination [18].

Note (as discussed previously in Section 9.3), the multiplication order of the basis matrices in
the decomposition analysis [Eq. (9.13)] is ambiguous (due to the noncommuting nature of ma-
trix multiplication). The influence of the order of the matrices in the decomposition analysis on
the retrieved polarization parameters was therefore investigated. The experimental and the Monte
Carlo-generated Mueller matrices (results presented above) were decomposed following either the
order of Eq. (9.13) or its reverse order (M = MD MR MΔ). Importantly, the three useful polariza-
tion parameters [Δ, ψ , and δ , derived through Eqs. (9.21), (9.25), and (9.26)], were found to be
∼independent of the order [difference in their values was in the range 1–5%] [17, 18]. This sug-
gests that the decomposition formalism is self-consistent with respect to the potential ambiguity of
ordering. Further work is underway to confirm this initial finding [31].

To summarize Sections 9.6 and 9.7, the applicability of the Mueller matrix decomposition ap-
proach in complex tissue-like turbid media (either for the forward or the backward detection ge-
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ometry) was validated experimentally with optical phantoms having controlled sample-polarizing
properties, and theoretically with a polarization sensitive Monte Carlo model capable of simulating
complex tissue polarimetry effects. The individual polarization effects can be successfully decou-
pled and quantified despite their simultaneous occurrence, even in the presence of the numerous
complexities due to multiple scattering. The ability to isolate individual polarization properties pro-
vides a valuable noninvasive tool for their quantification and may be relevant for biological tissue
examinations. In the following, initial applications of this promising approach in two scenarios of
significant clinical interest, that for noninvasive glucose measurements and for monitoring regener-
ative treatments of the heart, as well as initial in vivo demonstration, are discussed.

9.8 Initial Biomedical Applications

9.8.1 Noninvasive glucose measurement in tissue-like turbid media

Diabetes Mellitus is a chronic systemic disease, with no known cure, in which the body either fails
to produce, or fails to properly respond to the glucose regulator hormone insulin. The most reliable
current method for glucose monitoring in diabetic patients necessitates the drawing of blood, usually
by a finger prick several times a day – a painful, inconvenient, and poorly compliant procedure. A
tremendous need therefore exists for a noninvasive glucose monitoring method, as it would increase
the determination frequency and enable better insulin and caloric intake, leading to a tighter glucose
level control and preventing or delaying long-term complications. A variety of optical methods
have been attempted for blood glucose monitoring including, near-infrared (NIR) spectroscopy,
Raman spectroscopy, fluorescence, photoacoustics, optical coherence tomography and polarimetry,
but none have shown the requisite sensitivity/specificity/accuracy [9]. Polarimetry, based on the
chiral (handed) nature of the glucose molecules and their associated optical activity, is particularly
promising as it is potentially specific to glucose. In fact, such measurements in clear media have
been used for decades in the sugar industry. However, in a complex turbid medium like tissue,
polarimetric attempts for glucose quantification have been confounded by several factors. One of
the major stumbling blocks is that the optical rotation due to chiral substances in a turbid medium
is swamped by the much larger changes in the orientation angle of the polarization vector due to
scattering [10, 14, 18, 21].

It is thus essential to isolate the optical rotation caused exclusively by chiral molecules from the
(often much larger) apparent rotation caused by the scattering / detection geometry effects. The
matrix decomposition methodology is indeed able to perform this task, as shown in Figure 9.9 [30].
The variation of scattering induced rotation α is displayed as a function of distance from the point
of illumination of a chiral (χ = 0.082◦ cm−1, corresponding to 100 mM concentration of glucose),
nonbirefringent (Δn = 0), turbid medium (μs = 30 cm−1, g = 0.95, thickness = 1 cm). The incident
light was 45◦ polarized (Stokes vector [1 0 1 0] T ) and the rotation of the linear polarization vector
(α) was calculated from the recorded Stokes parameters [I Q U V ] of light exiting the sample
through the backscattering plane (X-Y plane, Z = 0) as

α = 0.5× tan−1(U/Q) (9.41)

As seen, changes in the polarization caused by scattering can manifest themselves as large ap-
parent optical rotation. Decomposition analysis revealed that the large scattering-induced apparent
rotation is due to linear diattenuation (also shown in the figure). This confounding effect is due
mainly to the singly (weakly) backscattered photons and gradually decreases away from the ex-
act backscattering direction [18] (see Section 9.7). Decomposition of the Mueller matrix can thus
decouple this chirality-unrelated rotation from the much smaller ψ rotation values caused by the
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FIGURE 9.9: Calculated optical rotation ψ (derived from the decomposition of Monte Carlo-
generated Mueller matrices, open triangles) of scattered light emerging in the backscattering di-
rection as a function of distance from the center of the incident beam from a chiral (χ = 0.082◦ /
cm, corresponding to 100 mM concentration of glucose) isotropic turbid medium (μs = 30 cm−1,
g = 0.95, thickness t = 1 cm). The corresponding scattering-induced rotation of the polarization
vector derived from the Stokes parameters of scattered light (for incident Stokes vector [1 0 1 0]
T ) is shown by solid triangles. The scattering-induced diattenuation d is also shown. The inset
shows the backwards detection geometry. The chirality-induced rotation approaches zero in the
exact backscattering direction (X = 0, data not shown). (Adopted from [30]).

circular birefringence of the medium (which can then be linked to glucose concentration).
The ability to decouple the small optical rotation caused exclusively by chiral molecules even in

the presence of numerous complexities due to the scattering/detection geometry and simultaneously
occurring polarization effects bodes well for the potential application of this method for noninvasive
glucose measurements in tissue. However, this remains to be rigorously investigated. In combina-
tion with Monte Carlo-determined path length distributions [32], we are currently exploring meth-
ods for extracting chiral molecule concentrations from derived optical rotations. Spectroscopic-
based polarimetry combined with chemometric regression analysis is also being investigated to
isolate the rotation due to glucose from that caused by other chiral biological constituents [33].

9.8.2 Monitoring regenerative treatments of the heart

The Mueller matrix decomposition method was explored for polarimetric monitoring of myocar-
dial tissue regeneration following stem-cell therapy. The anisotropic organized nature of myocardial
tissues stemming from their fibrous structure leads to linear birefringence. After suffering an infarc-
tion (heart attack), a portion of the myocardium is deprived of oxygenated blood and subsequently
cardiomyocytes die, being replaced by the fibrotic (scar) tissue [34].

Recently, stem-cell-based regenerative treatments for myocardial infarction have been shown to
reverse these trends by increasing the muscular and decreasing the scar tissue components [35].
These remodeling processes are expected to affect tissue structural anisotropy, and measurement of
linear birefringence may offer a sensitive probe into the state of the myocardium after infarction
and report on the success of regenerative treatments. However, these small birefringence alterations
must be decoupled from the other confounding polarization effects that are present in the composite
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FIGURE 9.10: Linear retardance δ derived from transmission polarization measurements in 1-
mm-thick sections from Lewis rat hearts following myocardial infarction. (a) Untreated tissues at
four weeks following infarction, (b) tissues following stem-cell treatments, at four weeks following
infarction, then two weeks after stem-cell therapy. The marked sector around ϕ = 180◦ indicates
the infracted region. Symbols are experimentally derived values, and lines are a guide for the eye.
Decreased birefringence levels in the infarcted region compared to normal regions are seen; this
difference is reduced following stem-cell therapy, as infracted region retardance values increase
towards normal-tissue levels. The results from birefringence measurements from the controls and
the stem-cell treated groups of infracted hearts are shown in histogram form in (c). Error bars
represent the standard deviation. Both untreated and stem-cell treated groups were comprised of 4
hearts, and 5 measurements were preformed in each region (normal and infarcted). (Adopted from
[30]).
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signals of the measured Mueller matrix elements from tissue.
Mueller matrices were recorded in the transmission geometry, from 1-mm thick ex vivo myocar-

dial samples from Lewis rats after myocardial infarction, both with and without stem-cell treatments
[30]. These were analyzed via polar decomposition to obtain linear retardance (δ ) values. The δ
values for two representative myocardial samples are shown in Figure 9.10.

The normal regions of the myocardium exhibit high levels of anisotropy, with derived δ values
in the range of ∼ 1.25 rad. A large decrease in linear retardance is seen in the infarcted region
(δ ∼ 0.2 rad) of the untreated myocardium (Figure 9.10a). This arises because the native well-
ordered anisotropic myocardium is replaced with disorganized isotropic scar tissue, likely collage-
nous in nature. An increase in δ towards the native levels is seen in the infarcted region after
stem-cell treatment (Figure 9.10b). The bar graph of Figure 9.10c shows the mean linear retardance
values from measurements of treated and untreated heart groups in the infarcted and normal regions.
Statistically-significant (p < 0.05) differences in derived retardance values were obtained between
normal and infarcted regions, and between infarcted regions with and without stem-cell treatments.
An increase in retardance seen in the infarcted regions of the treated hearts indicates reorganization
and re-growth (this was confirmed by histologic examination and is currently being corroborated
by second harmonic generation microscopy for collagen imaging). These results show promise for
the use of polarized light monitoring of stem-cell-based treatments of myocardial infarction, and
current work is directed towards extending this novel method for in vivo biomedical deployment.

9.8.3 Proof-of-principle in vivo biomedical deployment of the method

The first in vivo use of the Mueller matrix decomposition method for tissue characterization was
demonstrated using a dorsal skinfold window chamber mouse model [36]. In this model, the skin
layer of an athymic nude mouse (NCRNU-M, Taconic) was removed from a 10 mm diameter region
on the dorsal surface, and a titanium saddle was sutured in place to hold the skin flap vertically
[37]. A protective glass coverslip (145± 15 μm thick) was placed over the exposed tissue plane.
This allows for direct optical transmission measurements of polarized light through the ∼ 500 μm
thick layer. This model enables accurate measurements in an in vivo setting, free of many of the
challenges inherent in examining fully 3D tissue structures.

Collagenase was injected into a region of dermal tissue to alter the structure of the extracellular
matrix. The Mueller matrices were recorded both from the region of collagenase injection and a
distant control region. Measurements were made before collagenase treatment and for 5 h postin-
jection at 30-min intervals, with an additional measurement at 24 h. Photographs of the dorsal skin
flap window chamber model and of the experimental system, showing the mouse with its implanted
window chamber in the path of the interrogating beam, are displayed in Figure 9.11.

Values for linear retardance (δ ), net depolarization coefficient (Δ), optical rotation (ψ) and diat-
tenuation (d) were extracted from the experimentally-derived Mueller matrices at each time point,
using the polar decomposition approach [36]. The derived variations of δ and Δ (in both collagenase-
treated and control regions) are shown as a function of time following collagenase injection, in Fig-
ure 9.12a and 9.12b respectively. Values for optical rotation ψ and diattenuation d did not change
appreciably with treatment (data not shown). The value for δ is seen to vary from δ ≈ 1.2 rad
to δ ≈ 0.3 rad in the treated region, in contrast to the control region where the values remain es-
sentially constant at δ ≈ 1 rad. The decrease in birefringence is likely due to denaturation of the
collagen fibers (collagenase cleaves the collagen fibers by breaking the peptide bonds connecting
the monomer peptide units), which reduces the structural anisotropy. This was further confirmed
by histology, where a reduction in collagen fibers was observed in the treatment region [36]. Using
the approximate light path length, l ≈ 500 μm (the true path length will be somewhat longer due
to scattering [32]), the intrinsic birefringence Δn values were estimated as Δn = δλ/2πl, where
λ = 632.8 nm. The birefringence values prior to treatment were calculated as Δn ≈ 2.2× 10−4,
decreasing to Δn ≈ 0.6× 10−4, after treatment. These birefringence levels are reasonably close to
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FIGURE 9.11: (a) Photograph of the dorsal skin flap window chamber model in a mouse. Mea-
surements were made in two regions (collagenase treated and control) through the window chamber.
(b) Photograph of the experimental system, showing the mouse with its implanted window chamber
in the path of the interrogating beam. (Adopted from [36]).

FIGURE 9.12: (a) Linear retardance δ and (b) net depolarization coefficient Δ before and as a
function of time after collagenase injection in the treated and control regions. Symbols are experi-
mentally derived values, and lines are a guide for the eye. (Adopted from [36]).

those found in the literature for tissue birefringence, typically ∼ 1×10−3 [38].
In addition to the observed variation in δ , a decrease in the net depolarization coefficient Δ after

treatment, from ∼ 0.63 to ∼ 0.45, was also noted in the treated region (Figure 9.11b). The values
in the control region were again observed to remain essentially constant. This reduction in depolar-
ization is also due to the destruction of the collagen fibers, since these represent one of the primary
scattering structures in tissue [24]. Using the changes in the depolarizing properties of the tissue, the
scattering coefficient of the tissue was determined using the polarization-sensitive Monte Carlo sim-
ulations. The values for μs were estimated to be 182 cm−1 for the pretreatment tissue and 134 cm−1

for the posttreatment tissue, which are in reasonable agreement with literature values [24]. These
results demonstrate the ability of the method to quantify changes in tissue structure using polarized
light in vivo. The interpretation of measured changes in values for birefringence and depolarization
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show promise for the method’s ability to accurately quantify biologically-relevant tissue parameters
such as scattering and birefringence.

To conclude this section, the utility of the novel polar Mueller matrix decomposition approach has
been initially explored in two important potential biomedical applications, for noninvasive glucose
measurement in tissue-like turbid media and for quantification of tissue structural anisotropy. The
initial in vivo use of the method for polarimetric tissue characterization has also been demonstrated.
Results of these studies show promise and warrant further exploration. We are currently expanding
our investigations for the use of this promising method in vivo, both for noninvasive measurements
of glucose and for monitoring the response of infarcted myocardial tissues to stem-cell therapies.

9.9 Concluding Remarks on the Prospect of the Mueller Matrix Decomposi-
tion Method in Polarimetric Assessment of Biological Tissues

In this chapter, a novel general method for polarimetry analysis in turbid media based on po-
lar Mueller matrix decomposition has been discussed. The ability of this approach for delineating
individual intrinsic polarimetry characteristics in complex tissue-like turbid media was validated
theoretically with a polarized-light Monte Carlo model, and experimentally with a polarization-
modulation/synchronous detection setup on optical phantoms having controlled sample polarizing
properties. The individual polarization effects can be successfully decoupled and quantified despite
their simultaneous occurrence, even in the presence of the numerous complexities due to multiple
scattering. The ability to isolate individual polarization properties provides a potentially valuable
noninvasive tool for biological tissue characterization. Specifically, concentration determination of
optically active molecules such as glucose and quantification of tissue structural anisotropy are two
important biomedical avenues that have been initially explored. Clearly, there are many other po-
tential applications in biomedicine, both in tissue diagnostics and in treatment response monitoring.
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[4] L.V. Wang, G.L Coté, and S. L. Jacques, “Special section guest editorial: tissue polarimetry,”
J. Biomed. Opt. 7, 278 (2002).

[5] V.V. Tuchin, L. Wang, and D. Zimnyakov, Optical Polarization in Biomedical Applications,
Springer-Verlag, Berlin, Heidelberg, N.Y., (2006).

[6] V.V. Tuchin (ed.), Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues,
CRC Press, Taylor & Francis Group, London, (2009).

[7] P.J. Wu and J.T. Walsh Jr., “Stokes polarimetry imaging of rat tail tissue in a turbid medium:
degree of linear polarization image maps using incident linearly polarized light,” J. Biomed.
Opt. 11, 014031 (2006).

[8] J.F. de Boer and T.E. Milner, “Review of polarization sensitive optical coherence tomography
and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
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